

# Performance Management: Key to IP Telephony Success

Alan Clark, President & CEO Telchemy, Incorporated

http://www.telchemy.com

# **VoIP** Performance Management

- Voice, Video and other Real Time Applications
- VoIP Performance Issues and Problems
- Managing through multiple domains
- Enterprise VoIP Deployment Scenarios
- Measuring VoIP Performance
- Emerging VoIP Management Framework



#### Voice over IP Technology



telchemy

# Voice, Video and other Real Time Applications

- Voice over IP services .. deployment model
- Migration from isolated service "islands" to an integrated service
- Emerging real-time and near real-time services
- What does this mean from a performance management system perspective







# Growing range of (near) real time services

- Voice
  - Traditional telephone service, interactive voice
  - Conference services
  - Push-to-talk
- Video
  - Videoconferencing
  - Push-to-see
- Messaging

– IM



Performance management implications

- Voice over IP is a key application however moving forward – need to consider wider range of real time apps
- Today's VoIP scenarios are often isolated "islands" however tomorrow it will be necessary to manage across multiple networks



#### **VoIP** Performance Issues and Problems

- Well Known Problems
  - Packet Loss -- Leads to quality degradation
  - Jitter -- Leads to packet loss (discards)
  - Delay -- Causes conversational difficulty



### VoIP Performance Issues and Problems

- Well known problems
  - Packet Loss -- Leads to quality degradation
  - Jitter -- Leads to packet loss (discards)
  - Delay -- Causes conversational difficulty
- Lesser Known Problems
  - Packet loss and jitter are <u>transient</u> and can be hard to detect and diagnose
  - Echo becomes more obvious due to the delay of VoIP systems
  - Clipping, echo and gaps in speech can be caused by incorrect configuration of gateways and phones
  - Excessive delay or quality degradation can result from incorrect configuration of jitter buffers



#### Transient IP Problems – root cause

- Short (1-2 second) periods of high jitter or packet loss
- Typically due to short term congestion
- Can occur even if QoS enabled
  - Input queue in router overloaded
  - Processor bandwidth in router
- Major problem on lower bandwidth links
  - Teleworkers and branch offices



### Transient IP Problems – effect on call quality



Effect on VoIP call quality

-Appears as burst of 20-30% packet loss/ discard lasting 1-2 seconds

-Brief degradation in call quality – robotic/ distorted sound



#### Transient IP problems – user reaction





#### Echo – the "other" common VoIP problem





- Echo is quite common on phone services, particularly with 2-4 wire transitions
- Pre-VoIP, delay was short and hence echo sounded like "sidetone"
- VoIP introduces extra delay, hence makes echo more obvious



Delay

- High levels of delay can make interactive conversation difficult
- Effects of delay are task dependant
- Delay can be caused by
  - Network (transmission) delay
    - Core IP network delay
    - Serialization delay on slow access links
  - Jitter buffers in receiving systems
  - Encoding/decoding delays



- Active Testing
  - Generate test calls, measure characteristics
  - Ideal for on-demand and pre-deployment testing
  - Does generate additional network traffic
  - Does not measure what happens to "real" calls
- Non-Intrusive Testing
  - Measure characteristics of live calls
  - Ideal for performance management and troubleshooting
  - Does not generate additional network traffic
  - Needs live calls to measure



#### Active testing





#### Non-intrusive testing



- Fast (0.01 MIPS/call)

- Distributed
- Can be embedded in phone/gateway

Voice signal based monitoring

- More expensive (100 MIPS/call)
- Requires access to analog stream



#### Comparison

- Active and non-intrusive methods produce
  - Call Quality scores R factor and MOS score
  - Listening and Conversational quality metrics
  - Diagnostic data
- Active tests report conditions
  - As they were at the time of the test
  - Between source and termination of test call
- Non-intrusive tests report conditions
  - That affected a live call
  - Between the source and the monitoring point



# Servce Quality Monitoring with VQmon

- Widely used for both active and non-intrusive monitoring
- Extended E Model, incorporates a model of time varying call quality
- Measures distribution of lost and discarded packets, detects transient problems
- Can be integrated into IP phones/ gateways
- Core analysis function for VoIP probes
- Ultra-fast, supports cost-effective monitoring of large volumes of calls



## 2004... Enterprise IP Telephony Scenario



# Switched 100BaseT, VLAN, GigE, etc.



#### 2004... Hybrid IP PBX/ PSTN Gateway Scenario





#### 2004... Teleworkers and Distributed Call Centers?





#### 2004... Inter-Enterprise "IP Telephony"



telchem Actively managing multimedia

#### 2005... Inter-Enterprise "IP Telephony"





#### 2005... VoIP over WiFi



Industry focus on quality; however, still somewhat uncertain what level of quality to expect...

... but, WiFi's a "hot" technology, expect widespread deployment





# Probes, analyzers and voice quality testers can't decode encrypted payloads



#### Secure RTP – More Secure, Less Manageable?



Probes, analyzers and voice quality testers <u>can</u> decode RTP headers and <u>can</u> make use of RTCP SR/RR/XR metrics



#### Where does this leave us?

- QoS controls, VLANs, prioritization can help
- Problems can still occur due to
  - Access links to teleworkers, branch offices
  - Core IP network issues and problems
  - VoWiFi is an unknown quantity
  - Interaction of VoIP with "analog" networks
- Secure protocols make problem detection/ resolution difficult
- How to solve problems that span multiple networks?
- How to solve system level problems?



#### **VoIP** Performance Management Framework





- RFC 3611 VoIP Metrics universal set of "useful" data for VoIP performance reporting
- Packet metrics
  - Loss, Discard, Burst and Gap data
- Delay metrics
  - Round trip and end system delay
- Analog metrics
  - Signal, noise and echo level
- Call quality metrics
- Configuration data



# Monitoring VoIP Performance

- Next generation VoIP Probes
  - Non-intrusively monitor VoIP streams
  - Produce per-call and interval based call quality metrics
  - Detect transient IP problems and their impact on call quality
  - Collect RTCP XR reports from endpoints
  - Incorporate endpoint reported data into call quality metrics



#### Enterprise Application using New Framework





#### Summary

- Voice over IP performance management faces the challenge of growing complexity .. more real time services spanning more networks
- IP problems are transient, time varying and hard to reproduce – need real time performance monitoring
- Emerging performance management framework based on RTCP XR

